Package: sorocs 0.1.0

sorocs: A Bayesian Semiparametric Approach to Correlated ROC Surfaces

A Bayesian semiparametric Dirichlet process mixtures to estimate correlated receiver operating characteristic (ROC) surfaces and the associated volume under the surface (VUS) with stochastic order constraints. The reference paper is:Zhen Chen, Beom Seuk Hwang, (2018) "A Bayesian semiparametric approach to correlated ROC surfaces with stochastic order constraints". Biometrics, 75, 539-550. <doi:10.1111/biom.12997>.

Authors:Zhen Chen [aut], Beom Seuk Hwang [aut], Weimin Zhang [cre]

sorocs_0.1.0.tar.gz
sorocs_0.1.0.zip(r-4.5)sorocs_0.1.0.zip(r-4.4)sorocs_0.1.0.zip(r-4.3)
sorocs_0.1.0.tgz(r-4.4-any)sorocs_0.1.0.tgz(r-4.3-any)
sorocs_0.1.0.tar.gz(r-4.5-noble)sorocs_0.1.0.tar.gz(r-4.4-noble)
sorocs_0.1.0.tgz(r-4.4-emscripten)sorocs_0.1.0.tgz(r-4.3-emscripten)
sorocs.pdf |sorocs.html
sorocs/json (API)

# Install 'sorocs' in R:
install.packages('sorocs', repos = c('https://wzhang17.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/wzhang17/sorocs/issues

Datasets:
  • asrm - The example data is meant to represent the dataset supplied by the Physician Reliability Study (PRS), which is explored in Section 5 of the paper. The 'sampledata' file contains the following variables:

On CRAN:

3.00 score 2 scripts 384 downloads 1 exports 11 dependencies

Last updated 5 years agofrom:6cdd45c789. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 06 2024
R-4.5-winOKNov 06 2024
R-4.5-linuxOKNov 06 2024
R-4.4-winOKNov 06 2024
R-4.4-macOKNov 06 2024
R-4.3-winOKNov 06 2024
R-4.3-macOKNov 06 2024

Exports:sorocs

Dependencies:codalatticeMASSMatrixMatrixModelsmcmcMCMCpackmvtnormquantregSparseMsurvival

Package sorocs

Rendered fromsorocs-vignette.Rmdusingknitr::rmarkdownon Nov 06 2024.

Last update: 2020-02-26
Started: 2020-01-02